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Abstract

Word sense induction (WSI), or the task of automatically dis-
covering multiple senses or meanings of a word, has three
main challenges: domain adaptability, novel sense detection,
and sense granularity flexibility. While current latent variable
models are known to solve the first two challenges, they are
not flexible to different word sense granularities, which differ
very much among words, from aardvark with one sense, to
play with over 50 senses. Current models either require hy-
perparameter tuning or nonparametric induction of the num-
ber of senses, which we find both to be ineffective. Thus,
we aim to eliminate these requirements and solve the sense
granularity problem by proposing AutoSense, a latent vari-
able model based on two observations: (1) senses are rep-
resented as a distribution over topics, and (2) senses gen-
erate pairings between the target word and its neighboring
word. These observations alleviate the problem by (a) throw-
ing garbage senses and (b) additionally inducing fine-grained
word senses. Results show great improvements over the state-
of-the-art models on popular WSI datasets. We also show that
AutoSense is able to learn the appropriate sense granular-
ity of a word. Finally, we apply AutoSense to the unsuper-
vised author name disambiguation task where the sense gran-
ularity problem is more evident and show that AutoSense is
evidently better than competing models. We share our data
and code here: https://github.com/rktamplayo/
AutoSense.

Introduction
Word sense induction (WSI) is the task where given an am-
biguous target word (e.g. cold) and texts where the word is
used, we automatically discover its multiple senses or mean-
ings (e.g. (1) nose infection, (2) absence of heat, etc.). We
show examples of words with multiple senses and example
usage in a text1 in Figure 1. It is distinct from its similar
supervised counterpart, word sense disambiguation (WSD)
(Stevenson and Wilks 2003), because WSI models should
consider the following challenges due to its unsupervised
nature: (C1) adaptability to new domains, (C2) ability to
detect novel senses, and (C3) flexibility to different word
sense granularities (Jurgens and Klapaftis 2013). Another
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1All sense meanings are copied from WordNet: http://
wordnetweb.princeton.edu/perl/webwn

Senses of play

Senses of cold

Figure 1: Three senses of the noun cold and six of 17 senses
of the noun play in WordNet. Sense granularity problem
refers to the inflexibility of the model to the different number
of senses different words may have (i.e. 3 vs. 17).

task similar to the WSI is the unsupervised author name dis-
ambiguation (UAND) task (Song et al. 2007), where it aims
to automatically find different authors, instead of words,
with the same name.

In this paper, we consider a latent variable modeling ap-
proach to WSI problem as it is proven to be more effec-
tive than other approaches (Chang, Pei, and Chen 2014;
Komninos and Manandhar 2016). Specifically, we look into
methods based on Latent Dirichlet Allocation (LDA) (Blei,
Ng, and Jordan 2003), a topic modeling method that au-
tomatically discovers the topics underlying a set of docu-
ments using Dirichlet priors to infer the multinomial dis-
tribution over words and topics. LDA naturally answers
two of the three main problems mentioned above, i.e. (C1)
and (C2), of the WSI task (Brody and Lapata 2009). How-
ever, it is not flexible with regards to (C3), or the sense
granularity problem, as it requires the users to specify
the number of senses: Current systems (Wang et al. 2015;
Chang, Pei, and Chen 2014) required to set the number of
senses to a small number (set to 3 or 5 in the literature) to
get a good accuracy, however many words may have a large
number of senses, e.g. play in Figure 1.
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Figure 2: Example induced senses when the target word is
cold from LDA and AutoSense. Applying our observations
to LDA introduces both garbage and fine-grained senses.

To this end, we propose a latent variable model called
AutoSense that solves all the challenges of WSI, including
overcoming the sense granularity problem. Consider Figure
2 on finding the senses of the target word cold. An LDA
model naively considers the topics as senses and thus dif-
ferentiates the usage of cold in the medical and science do-
mains, even though the same sense is commonly used in the
two domains. This results in too many senses induced by
the model. We extend LDA using two observations. First,
we introduce a separate latent variable for senses, which
can be represented as a distribution over topics. This in-
troduces more accurate induced senses (e.g. the cold: nose
infection sense can be from a mixture of medical, science,
and temperature topics), as well as garbage senses (colored
red in the figure) as most topic distributions will not be as-
signed to any instance. Second, we enforce senses to gen-
erate target-neighbor pairs, a pair (wt, w) which consists of
the target word wt and one of its neighboring word w, at
once. This separates the topic distributions into fine-grained
senses based on lexical semantic features easily captured by
the target-neighbor pairs. For example, the cold: absence of
heat and the cold: sensation from low temperature senses are
both related to temperature, but have different syntactic and
semantic usage.

By applying the two observations above, AutoSense re-
moves the strict requirement on correctly setting the num-
ber of senses by throwing garbage senses and introducing
fine-grained senses. Nonparametric models (Teh et al. 2004;
Lau, Cook, and Baldwin 2013) have also been used to
solve this problem by automatically inducing the number of
senses, however our experiments show that these models are
less effective than parametric models and induce incorrect
number of senses. Our proposed model is parametric, and is
also able to adapt to the different number of senses of dif-
ferent words, even when the number of senses is set to an
arbitrarily large number. Moreover, the model can also be
used in other tasks such as UAND where the variance in the
number of senses is large. To the best of our knowledge, we
are the first to experiment extensively on the sense granular-
ity problem of parametric latent variable models.

In our experiments, we estimate the parameters of the
model using collapsed Gibbs sampling and get the sense dis-
tribution of each instance as the WSI solution. We evaluate
our model using the SemEval 2010 and 2013 WSI datasets

(Manandhar et al. 2010; Jurgens and Klapaftis 2013). Re-
sults show that AutoSense performs superior than previous
state-of-the-art models. We also provide analyses and ex-
periments that shows how AutoSense overcomes the issue
on sense granularity. Finally, we show that our model per-
forms the best on unsupervised author name disambiguation
(UAND), where the sense granularities are extremely varied.

Related Work
Previous works on WSI used context vectors and attributes
(Almuhareb, Poesio, and others 2006), pretrained classifica-
tion systems (Tsvetkov et al. 2014), and alignment of par-
allel corpus (Yao, Van Durme, and Callison-Burch 2012).
In the most recent shared task on WSI (Jurgens and Kla-
paftis 2013), top models used lexical substitution method
(AI-KU) (Baskaya et al. 2013) and Hierarchical Dirichlet
Process trained with additional instances (Unimelb) (Lau,
Cook, and Baldwin 2013).

Latent variable models such as LDA (Blei, Ng, and Jor-
dan 2003) are used to induce the word sense of a target word
after rigorous preprocessing and feature extraction (LDA,
Spectral) (Goyal and Hovy 2014). More recent models in-
troduced a latent variable for the sense of a word, with
the assumption that a sense has multiple concepts (HC,
HC+Zipf) (Chang, Pei, and Chen 2014) and that topics and
senses should be inferred jointly (STM) (Wang et al. 2015).
In this paper, we also use a separate sense latent variable,
however we show boost in performance by representing it
with more versatility and by incorporating the use of target-
neighbor pairs. HC was also extended to a nonparametric
model (BNP-HC) (Teh et al. 2004) in order to automati-
cally set the number of senses of a word, providing flexi-
bility to the sense granularity (Yao and Van Durme 2011;
Lau et al. 2012; Lau, Cook, and Baldwin 2013). In our ex-
periments, we show that the sense granularity induced from
nonparametric models are incorrect making the models less
effective.

Recent inclusions to the WSI models are neural-based
dense distributional representation models. STM also used
word embeddings (Mikolov et al. 2013) to assign similarity
weights during inference (STM+w2v) (Wang et al. 2015).
Existing sense embeddings are also used to perform word
sense induction (CRP-PPMI, SE-WSI-fix, WG, DIVE)
(Song 2016; Pelevina et al. 2016; Chang et al. 2018). These
models, on their own, do not perform well on the WSI task
until recently when embeddings of words and their depen-
dencies are used to construct a probabilistic model (MCC)
(Komninos and Manandhar 2016). We show that neural-
based embeddings are still ineffective for this task and that
our model performs better than these models as well.

In the unsupervised author name disambiguation (UAND)
domain, LDA-based models have also been used (Shu,
Long, and Meng 2009) to employ text features for the
task, while non-text features such as co-authors, publication
venue, year, and citations are found to be stronger features
(Tang et al. 2012). In this paper, we study on how to improve
the performance of text features for UAND using latent vari-
able models, which can later be combined with non-text fea-
tures in the future work.
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Figure 3: Graphical representation of AutoSense. Nodes are
random variables, edges are dependencies, and plates are
replications. Nodes shaded in black are observed. The node
shaded in red is the observed target word. The dependency
edges of θs|t, θt|s, and θst are not shown for clarity: They
are all generated by the Dirichlet prior α. Moreover, sense
variables are dependent to θs|t and θst, while topic variables
are dependent to θt|s and θst.

Proposed Model
There are two reasons why Latent Dirichlet Allocation
(LDA) (Blei, Ng, and Jordan 2003) is not effective for WSI.
First, LDA tries to give instance assignments to all senses
even when it is unnecessary. For example, when the num-
ber of senses S is set to 10, the model tries to assign all
the senses to all instances even when the original number of
senses of a target word is 3. LDA extensions (Wang et al.
2015; Chang, Pei, and Chen 2014) mitigated this problem
by setting S to a small number (e.g. 3 or 5). However, this
is not a good solution because there are many words with
more than five senses. Second, LDA and its extensions do
not consider the existence of fine-grained senses. For exam-
ple, the cold: absence of heat and the cold: sensation from
low temperature senses are fine-grained senses because they
are similarly related to temperature yet have different usage.

Granularity-Agnostic Sense Model
To solve the problems above, we propose to extend LDA in
two parts. First, we introduce a new latent variable, apart
from the topic latent variable, to represent word senses. Pre-
vious works also attempted to introduce a separate sense la-
tent variable to generate all the words (Chang, Pei, and Chen
2014), or to generate only the neighboring words within a lo-
cal context, decided by a strict user-specified window (Wang
et al. 2015). We improve by softening the strict local context
assumption by introducing a switch variable which decides
whether a word not in a local context should be generated
by conditioning also on the sense latent variable. Our exper-
iments show that our sense representation provides superior
improvements from previous models.

Second, we force the model to generate target-neighbor

D # of documents
L # of local context words
M # of global context words
S # of senses
T # of topics
V vocabulary size
wt target word

wl, wm word in local/global context
sl, sm sense in local/global context
tl, tm topic in local/global context
x sense/topic switch

θs, θt, θx multinomial distribution over senses/topics/switches
θs|t, θt|s multinomial distribution over senses/topics given topics/senses
θst multinomial distribution over sense & topic pairs

φ(s), φ(t) multinomial distribution over words
α Dirichlet prior over θs, except θx
β Dirichlet prior over φs
γ Dirichlet prior over θx

Table 1: Meanings of the notations in AutoSense

pairs at once in the local context, instead of generating
words one by one. A target-neighbor pair (wt, w) consists
of the target word wt and a neighboring word w in the lo-
cal context. For example, the target-neighbor pairs in “cold
snowy weather”, where wt is cold, are (cold, snowy) and
(cold, weather). These pairs give explicit information on
the lexical semantics of the target word given the neighbor-
ing words. In our running example (Figure 2), the cold: ab-
sence of heat and the cold: sensation from low temperature
senses can be easily differentiated when we are given the
target-neighbor pairs (cold, weather) and (cold, climate)
for the former, and (cold, water) and (cold, fresh) for the
latter sense, rather than the individual words.

These extensions bring us to our proposed model called
AutoSense. The graphical representation of AutoSense is
shown in Figure 3, while the meaning of the notations used
in this paper is shown in Table 1.

Generative process For each instance, we divide the text
into two contexts: the local context L which includes the
target word wt and its neighboring words wl, and the global
context M which contains the other remaining words wm.
Words from different contexts are generated separately.

In the global context M , words wm are generated from
either a sense s or a topic t latent variable. The selection
is done by a switch variable x. If x = 1, then the word
generation is done by using the sense variable s. Otherwise,
it is done by using the topic variable t. The probability of a
global context word wm in document d is given below.
P (wm|d) = P (wm|x = 1)

∑
s

P (wm|s)P (s|d)+

P (wm|x = 2)
∑
t

P (wm|t)P (t|d)

= θx=1

∑
s

θ(d)s φ(s)wm
+ θx=2

∑
t

θ
(d)
t φ(t)wm

In the local context L, words wl are generated from both
sense s and topic t variables. Also, the target word wt is
generated along with wl as target-neighbor pairs (wt, wl)



using the sense variable s. Sense and topic variables are de-
pendent to each other, so we generate them using the joint
probability p(s, t|d). We factorize p(s, t|d) approximately
using ideas from dependency networks (Heckerman et al.
2000) to avoid independency assumptions, i.e. p(a, b|c) =
p(a|b, c)p(b|a, c), and deficient modeling (Brown et al.
1993) to ignore redundancies, i.e. p(a|b, c)p(b|a, c) =
p(a|b)p(a|c)p(b|a)p(b|c)p(a, b). The probability of a local
context word wl in document d given below.

P (wt, wl|d) =
∑
s

∑
t

p(wt|s)p(wl|s, t)p(s, t|d)

≈
∑
s

∑
t

p(wt|s)p(wl|s, t)p(s|d, t)p(t|d, s)

≈
∑
s

∑
t

p(wt|s)p(wl|s)p(wl|t)

p(s|d)p(s|t)p(t|d)p(t|s)p(s, t)
=

∑
s

∑
t

φ(s)wt
φ(s)wl

φ(t)wl
θ(d)s θ

(d)
t θs|tθt|sθst

Inference We use collapsed Gibbs sampling (Griffiths and
Steyvers 2004) to estimate the latent variables. At each tran-
sition step of the Markov chain, for each word wm in the
global context, we draw the switch x ∼ {1, 2}, and the sense
s = k or the topic t = j variables using the conditional
probabilities given below. The variable CABab represents the
number of a ∈ A and b ∈ B assignments, excluding the
current word. The rest corresponds to the other remaining
variables, such as the instance d, the current word wm, the θ
and φ distributions, and the α, β, and γ Dirichlet priors.

P (x = 1, s = k|rest) = CDXd1 + γ∑2
x′=1 C

DX
dx′ + 2γ

CDSdk + α∑S
k′=1 C

DS
dk′ + Sα

CSWkwm
+ β∑V

w′=1 C
SW
kw′ + Vmβ

P (x = 2, t = j|rest) = CDXd2 + γ∑2
x′=1 C

DX
dx′ + 2γ

CDTdj + α∑T
j′=1 C

DT
dj′ + Tα

CTWjwm
+ β∑V

w′=1 C
TW
jw′ + Vmβ

Subsequently, for each word wl and the target word wt
(forming the target-neighbor pair (wt, wl)) in the local con-
text, we draw the sense s = k and the topic t = j variables
using the conditional probability given below.

P (ti = j, si = k|rest) =
CDTdj + α∑T

j′=1 C
DT
dj′ + Tα

CDSdk + α∑S
k′=1 C

DS
dk′ + Sα

CTWjwl
+ β∑V

w′=1 C
TW
jw′ + Vlβ

CSWkwl
+ β∑V

w′=1 C
SW
kw′ + Vlβ

CSWkwt
+ β∑V

w′=1 C
SW
kw′ + Vlβ + 1

CSTkj + α∑T
j′=1 C

ST
kj′ + Tα

CTSjk + α∑S
k′=1 C

TS
jk′ + Sα

CSTkj + α∑S
k′=1

∑T
j′=1 C

ST
k′j′ + STαj′

Word sense induction After inference is done, the ap-
proximate probability of the sense s of the target word in a
given document d is induced using the sense distribution of
the document as shown in the equation below, where CABab
represents the number of a ∈ A and b ∈ B assignments. We
also calculate the word distribution of each sense using the
second equation below to inspect the meaning of sense.

θs|d =
CDSds∑S
s′=1 C

DS
ds′

θw|s =
CSWsw∑V
w′=1 C

SW
sw′

(1)

Experimental setup
Datasets and preprocessing We use two publicly avail-
able datasets: SemEval 2010 Task 14 (Manandhar et al.
2010) and SemEval 2013 Task 13 (Jurgens and Klapaftis
2013). The SemEval 2010 dataset2 consists of 50 verbs and
50 nouns, each with different number of instances for a to-
tal of 8915 instances. SemEval 2013 dataset3 consists of 20
verbs, 20 nouns, and 10 adjectives, with a total of 4664 in-
stances.

For preprocessing, we do tokenization, lemmatization,
and removing of symbols to build the word lists using Stan-
ford CoreNLP (Manning et al. 2014). We divide the word
lists into two contexts: the local and global context. Follow-
ing (Wang et al. 2015), we set the local context window to
10, with a maximum number of words of 21 (i.e. 10 words
before and 10 words after). Other words are put into the
global context. Note however that AutoSense has a less strict
global/local context assumption as it treats some words in
the global context as local depending on the switch variable.

Parameter setting We set the hyperparameters to α =
0.1, β = 0.01, γ = 0.3, following the conventional setup
(Griffiths and Steyvers 2004; Chemudugunta, Smyth, and
Steyvers 2006). We arbitrarily set the number of senses to
S = 15, and the number of topics T = 2S = 30, following
(Wang et al. 2015). We also include four other versions of
our model: AutoSense−wp removes the target-neighbor pair
constraint and transforms the local context to that of STM,
AutoSense−sw removes the switch variable and transforms
the global context to that of LDA, AutoSenses=X is a tuned
and best version of the model, where the number of senses
is tuned over a separate development set provided by the
shared tasks and X is the tuned number of sense, different
for each dataset, and AutoSenses=100 is the overestimated
and worst version of the model, where we set the number of
senses to an arbitrary large number, i.e. 100.

We set the number of iterations to 2000 and run the Gibbs
sampler. Following the convention of previous works (Lau
et al. 2012; Goyal and Hovy 2014; Wang et al. 2015), we
assume convergence when the number of iterations is high.
However, due to the randomized nature of Gibbs sampling,
we report the average scores over 5 runs of Gibbs sampling.
We then use the distribution θs|d as shown in Equation 1 as
the solution of the WSI problem.

2https://www.cs.york.ac.uk/semeval2010_WSI
3https://www.cs.york.ac.uk/semeval-2013/

task13/



Model F-S V-M AVG δ(#S)

LVMs

LDA 60.7 4.4 16.34 1.40
Spectral 61.5 4.5 16.64 1.98

HC 44.4 11.5 22.62 1.15
HC+Zipf 35.1 15.2 23.10 3.81
BNP-HC 23.1 21.4 22.23 11.77

NBEs CRP-PPMI 57.7 2.9 12.94 2.09
SE-WSI-fix 55.1 9.8 23.24 1.35

AutoSense−wp 59.3 9.2 23.36 2.16
AutoSense−sw 61.1 8.6 22.92 1.42

AutoSense 61.7 9.8 24.59 0.33
AutoSenses=5 62.9 10.1 25.20 0.32

AutoSenses=100 61.2 9.6 24.23 0.78

(a) SemEval 2010 WSI dataset

Model F-BC F-NMI AVG
Substitution AI-KU 39.0 6.50 15.92

LVMs Unimelb 48.3 6.00 17.02
STM 53.5 6.96 19.30

NBEs WG 58.1 1.60 9.64
DIVE 49.9 3.50 13.22

LVMs + NBEs STM+w2v 55.4 7.14 19.89
MCC 55.6 7.62 20.58

AutoSense−wp 55.7 7.69 20.69
AutoSense−sw 61.4 7.36 21.26

AutoSense 61.7 7.96 22.16
AutoSenses=7 61.7 7.97 22.17

AutoSenses=100 61.0 7.25 21.03
with additional contexts

STM +actual 59.1 9.39 23.56
+ukWac 54.5 9.74 23.04

AutoSense +actual 62.2 9.55 24.37

(b) SemEval 2013 WSI dataset

Table 2: Performance of different models on the datasets.
Best scores are bold-faced. LVMs are Latent Variable Mod-
els, while NBEs are Neural-based Embeddings.

Experiments
Word sense induction
SemEval 2010 For the SemEval 2010 dataset, we com-
pare models using two unsupervised metrics: V-measure (V-
M) and paired F-score (F-S). V-M favors a high number of
senses (e.g. assigning one cluster per instance), while F-S
favors a small number of senses (e.g. all instances in one
cluster) (Manandhar et al. 2010). In order to get a common
ground for comparison, we do a geometric average AVG of
both metrics, following (Wang et al. 2015). Finally, we also
report the absolute difference between the actual (3.85) and
induced number of senses as δ(#S).

We compare with seven other models: a) LDA on co-
occurrence graphs (LDA) and b) spectral clustering on co-
occurrence graphs (Spectral) as reported in (Goyal and
Hovy 2014), c) Hidden Concept (HC), d) HC using Zipf’s
law (HC+Zipf), and e) Bayesian nonparametric version of
HC (BNP-HC) as reported in (Chang, Pei, and Chen 2014),
f) CRP-based sense embeddings with positive PMI vectors
as pre-trained vectors (CRP-PPMI), and g) Multi-Sense
Skip-gram Model (SE-WSI-fix) as reported in (Song 2016).

Results are shown in Table 2a, where AutoSense outper-
forms other competing models on AVG. Among the Au-
toSense models, the AutoSense−wp and AutoSense−sw ver-
sion perform the worst, emphasizing the necessity of the
target-neighbor pairs and the switch variable. The overesti-
mated AutoSenses=100 performs better than previously pro-
posed models, proving the robustness of our model on the
different word sense granularities. On the δ(#S) metric,
the untuned AutoSense and AutoSenses=5 perform the best.
The V-M metric needs to be interpreted carefully, because it
can easily be maximized by separating all instances into dif-
ferent sense clusters and thus overestimating the actual num-
ber of senses #S and decreasing the F-S metric. The model
BNP-HC is an example of such: Though its V-M metric is
the highest, it scores the lowest on the F-S metric and greatly
overestimates #S, thus having a very high δ(#S). The goal
is thus a good balance of V-M and F-S (i.e. highest AVG),
and a close estimation of #S (i.e. lowest δ(#S), which is
successfully achieved by our models.

SemEval 2013 Two metrics are used for the SemEval
2013 dataset: fuzzy B-cubed (F-BC) and fuzzy normalized
mutual information (F-NMI). F-BC gives preference to la-
belling all instances with the same sense, while F-NMI gives
preference to labelling all instances with distinct senses.
Therefore, computing the AVG of both metrics is also nec-
essary in this experiment, for ease of comparison, as also
suggested in (Wang et al. 2015).

We use seven baselines: a) lexical substitution method
(AI-KU) and b) nonparametric HDP model (Unimelb) as
reported in (Jurgens and Klapaftis 2013), c) Sense-Topic
Model STM, d) STM with word2vec weights (STM+w2v)
as reported in (Wang et al. 2015), e) Word Graph embed-
dings (WG), f) Distributional Inclusion Vector Embedding
(DIVE) as reported in (Chang et al. 2018), and g) Multi Con-
text Continuous model MCC as reported in (Komninos and
Manandhar 2016).

Results are shown in Table 2b. Among the models, all
versions of AutoSense perform better than other models on
AVG. The untuned AutoSense and AutoSenses=7 especially
garner noticeable increase of 6.1% on fuzzy B-cubed metric
from MCC, the previous best model. We also notice a big
6.0% decrease on the fuzzy B-cubed of AutoSense when the
target-neighbor pair context is removed. This means that in-
troducing the target-neighbor pair is crucial to the improve-
ment of the model. Finally, the overestimated AutoSense
model performs as well as the other AutoSense models, even
outperforming all previous models on AVG, which proves
the effectiveness of AutoSense even when s is set to a large
value.

For completeness, we also report STM with additional
contexts, STM+actual and STM+ukWac (Wang et al. 2015),
where they used the actual additional contexts from the orig-
inal data and semantically similar contexts from ukWac,
respectively, as additional global context. With the perfor-
mance gain we achieved, AutoSense without additional con-
text can perform comparably to models with additional con-
texts: Our model greatly outperforms these models on the



Sense Word distribution #Docs
1 hotel tour tourist summer flight 22
2 month ticket available performance 3
3 guest office stateroom class suite 3
* advance overseas line popular japan 0
* email day buy unable tour 0
* sort basic tour time 0

Table 3: Six of the 15 senses of the target verb book using
AutoSense with S = 15. The word lists shown are prepro-
cessed to remove stopwords and the target word. The first
three senses are senses which are assigned at least once to
an instance document. The last three are garbage senses.

F-BC metric by at least 2%. Also, considering that both Au-
toSense and STM are LDA-based models, the same data en-
hancements can straightforwardly be applied when the needs
arise. We similarly apply the actual additional contexts to
AutoSense and find that we achieve state-of-the-art perfor-
mance on AVG.

Sense granularity problem
The main weakness of LDA when used on WSI task is
the sense granularity problem. Recent models such as HC
(Chang, Pei, and Chen 2014) and STM (Wang et al. 2015)
mitigated this problem by tuning the number of senses hy-
perparameter S to minimize the error. However, such tuning,
often empirically set to a small number such as S = 3 (Wang
et al. 2015), fails to infer varying number of senses of words,
especially for words with a higher number of senses. Non-
parametric models such as HDP and BNP-HC (Lau, Cook,
and Baldwin 2013; Chang, Pei, and Chen 2014) claim to au-
tomatically induce different S for each word. However, as
shown in the results in Table 2, the estimated S is far from
the actual number of senses and both models are ineffective.

On the other hand, Table 2 also shows that AutoSense
is effective even when S is overestimated. We explain why
through an example result shown in Table 3, where the tar-
get word is the verb book, the actual number of senses is
three, and S is set to 15. First, we see that there are senses
which are not assigned to any instance document, signified
by ∗, which we call garbage senses. We notice that effec-
tively representing a new latent variable for sense as a distri-
bution over topics forces the model to throw garbage senses.
Second, while it is easy to distinguish the third sense (i.e.,
book: register in a booker) to the two other senses, the first
and second senses both refer to planning or arranging for
an event in advance. Incorporating the target-neighbor pairs
helps the model differentiates both into fine-grained senses
book: arrange for and reserve in advance and book: engage
for a performance.

We compare the competing models quantitatively on how
they correctly detect the actual number of sense clusters us-
ing cluster error, which is the mean absolute error between
the detected number and the actual number of sense clusters.
We compare the cluster errors of LDA (Blei, Ng, and Jordan
2003), STM (Wang et al. 2015), HC (Chang, Pei, and Chen
2014), and a nonparametric model HDP (Teh et al. 2004),
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Figure 4: Cluster error of models with different number of
senses S. The vertical dashed lines correspond to the mean
and the max of the actual number of senses. The x-axes are
log-scaled.

with AutoSense. We report the results in Figure 4. Results
show that the cluster error of LDA increases sharply as the
number of senses exceeds the actual mean number of senses.
HC and STM also throw garbage senses since they also in-
troduce in some way a new sense variable, however the clus-
ter errors of both models still increase when S is set beyond
the maximum number of senses. We argue that this is be-
cause first, the sense representation is not optimal as they as-
sume strict local/global context assumption, and second and
most importantly, the models do not produce fine-grained
senses. AutoSense does both garbage sense throwing and
fine-grained sense induction, which helps in the detection
of the actual word granularity. Finally, the cluster error of
AutoSense is always better than that of HDP. This shows
that AutoSense, despite being a parametric model, automat-
ically detects the number of sense clusters without parameter
tuning and is more accurate than the automatic detection of
nonparametric models.

Unsupervised author name disambiguation
Unsupervised author name disambiguation (UAND) is a
task very similar to the WSI task, where ambiguous author
names are the target words. However, one additional chal-
lenge of UAND is that there can be as many as 100 authors



Dataset Min Max Mean StdDev
SemEval 2010 2 16 7.68 3.35
SemEval 2013 2 7 3.85 1.40

PubMed 1 28 10.41 7.68
Arnet 1 112 14.18 18.02

Table 4: Statistics of the number of senses of target
words/names in the datasets used in the paper.

with the same name, whereas words can have at most 20 dif-
ferent senses, at least in our datasets, as shown in the dataset
statistics in Table 4. Moreover, the standard deviations of the
author name disambiguation datasets are also higher, which
means that there is more variation on the number of senses
per target author name. Thus, in this task, the sense gran-
ularity problem is more difficult and needs to be addressed
properly.

Current state-of-the-art models use non-text features such
as publication venue and citations (Tang et al. 2012). We ar-
gue that text features also provide informative clues to dis-
ambiguate author names. In this experiment, we make use
of text features such as the title and abstract of research pa-
pers as data instance of the task. In addition, we also include
in our dataset author names and the publication venue as
pseudo-words. In this way, we can reformulate the UAND
task as a WSI task, and exploit text features not used in cur-
rent techniques.

Experimental setup We use two publicly available
datasets for the UAND task: Arnet4 and PubMed5. The Ar-
net dataset contains 100 ambiguous author names and a to-
tal of 7528 papers as data instance. Each instance includes
the title, author list, and publication venue of a research
paper authored by the given author name. In addition, we
also manually extract the abstracts of the research papers for
additional context. The PubMed dataset contains 37 author
names with a total of 2875 research papers as instances. It
includes the PubMed ID of the papers authored by the given
author name. We extract the title, author list, publication
venue, and abstract of each PubMed ID from the PubMed
website.

We use LDA (Blei, Ng, and Jordan 2003), HC (Chang,
Pei, and Chen 2014) and STM (Wang et al. 2015) as base-
lines. We do not compare with non-text feature-based mod-
els (Tang et al. 2012; Cen et al. 2013) because our goal is
to compare sense topic models on a task where the sense
granularities are more varied. For STM and AutoSense, the
title, publication venue and the author names are used as lo-
cal contexts while the abstract is used as the global context.
This decision is based on conclusions from previous works
(Tang et al. 2012) that the title, publication venue, and the
author names are more informative than the abstract when
disambiguating author names. We use the same parameters
as used above, and we set S to 5, 25, 50, and 100 to com-

4https://aminer.org/disambiguation
5https://github.com/Yonsei-TSMM/author_

name_disambiguation

Model S = 5 S = 25 S = 50 S = 100
LDA 31.5 13.4 9.8 8.2
HC 46.3 46.3 44.4 41.7

STM 52.8 55.0 55.5 55.0
AutoSense 56.2 56.4 57.9 58.8

(a) Arnet Dataset

Model S = 5 S = 25 S = 50 S = 100
LDA 41.4 13.3 8.9 9.0
HC 42.5 44.1 41.6 41.3

STM 44.9 44.4 44.9 41.9
AutoSense 44.4 45.5 46.6 46.5

(b) PubMed Dataset

Table 5: Paired F1 measures of competing models with dif-
ferent number of senses S on UAND datasets.

pare the performances of the models as the number of senses
increases.

Results For evaluation, we use the pairwise F1 measure
to compare the performance of competing models, follow-
ing (Tang et al. 2012). Results are shown in Figure 5. Au-
toSense performs the best on almost all settings, except on
the PubMed dataset and when S = 5, where it garners a
comparable result with STM. However, in the case where S
is set close to the maximum number of senses in the dataset
(i.e. 28 in PubMed and 112 in Arnet), AutoSense performs
the best among the models. LDA and HC perform badly on
all settings and greatly decrease their performances when
S becomes high. STM also shows decrease in performance
on the PubMed dataset when S = 100. This is because the
PubMed dataset has a lower maximum number of senses,
and STM is sensitive in the setting of S, and thus hurts the
robustness of the model to different sense granularities.

Conclusion
We proposed a solution to answer the sense granularity prob-
lem, one of the major challenges of the WSI task. We in-
troduced AutoSense, a latent variable model that not only
throws away garbage senses, but also induces fine-grained
senses. We showed that AutoSense greatly outperforms the
current state-of-the-art models in both SemEval 2010 and
2013 WSI datasets. We also show experiments on how Au-
toSense is able to overcome sense granularity problem, a
well-known flaw of latent variable models on. We further
applied our model to UAND task, a similar task but with
more varying number of senses, and showed that AutoSense
performs the best among latent variable models, proving its
robustness to different sense granularities.
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