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Abstract
In sentence classification tasks, additional contexts,
such as the neighboring sentences, may improve
the accuracy of the classifier. However, such con-
texts are domain-dependent and thus cannot be
used for another classification task with an inappro-
priate domain. In contrast, we propose the use of
translated sentences as domain-free context that is
always available regardless of the domain. We find
that naive feature expansion of translations gains
only marginal improvements and may decrease the
performance of the classifier, due to possible inac-
curate translations thus producing noisy sentence
vectors. To this end, we present multiple context
fixing attachment (MCFA), a series of modules at-
tached to multiple sentence vectors to fix the noise
in the vectors using the other sentence vectors as
context. We show that our method performs com-
petitively compared to previous models, achiev-
ing best classification performance on multiple data
sets. We are the first to use translations as domain-
free contexts for sentence classification.

1 Introduction
One of the primary tasks in natural language processing
(NLP) is sentence classification, where given a sentence (e.g.
a sentence of a review) as input, we are tasked to classify it
into one of multiple classes (e.g. into positive or negative).
This task is important as it is widely used in almost all sub-
areas of NLP such as sentiment classification for sentiment
analysis [Pang and Lee, 2007] and question type classification
for question answering [Li and Roth, 2002], to name a few.
While past methods require feature engineering, recent meth-
ods enjoy neural-based methods to automatically encode the
sentences into low-dimensional dense vectors [Kim, 2014;
Joulin et al., 2017]. Despite the success of these methods, the
major challenge in this task is that extracting features from a
single sentence limits the performance.

To overcome this limitation, recent works attempted to
augment different kinds of features to the sentence, such as
the neighboring sentences [Lin et al., 2015] and the topics
of the sentences [Zhao et al., 2017]. However, these meth-
ods used domain-dependent contexts that are only effective
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Figure 1: PCA visualizations of unaltered sentence vectors on TREC
data set, where each language is effective for a specific class, high-
lighted using a yellow circle.

when the domain of the task is appropriate. For one thing,
neighboring sentences may not be available in some tasks
such as question type classification. Moreover, topics inferred
using topic models may produce less useful topics when the
data set is domain-specific such as movie review sentiment
classification [Mimno et al., 2011].

In this paper, we propose the usage of translations as com-
pelling and effective domain-free contexts, or contexts that
are always available no matter what the task domain is. We
observe two opportunities when using translations.

First, each language has its own linguistic and cultural
characteristics that may contain different signals to effec-
tively classify a specific class. Figure 1 contrasts the sentence
vectors of the original English sentences and their Arabic-
translated sentences in the question type classification task. A
yellow circle signifies a clear separation of a class. For exam-
ple, the green class, or the numeric question type, is circled in
the Arabic space as it is clearly separated from other classes,
while such separation cannot be observed in English. Mean-
while, location type questions (in orange) are better classified
in English.

Second, the original sentences may include language-
specific ambiguity, which may be resolved when presented
with its translations. Consider the example English sentence
“The movie is terribly amazing” for the sentiment classifica-
tion task. In this case, terribly can be used in both positive
and negative sense, thus introduces ambiguity in the sentence.
When translated to Korean, it becomes “영화는 대단히 훌
륭합니다” which means “The movie is greatly magnificent”,
removing the ambiguity.

The above two observations hold only when translations
are supported for (nearly) arbitrary language pairs with suf-
ficiently high quality. Thankfully, translation services (e.g.
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Figure 2: PCA visualizations of unaltered sentence vectors (left) and
the corresponding MCFA-altered vectors (right) on the MR data set.
d is the Mahalanobis distance between the two class clusters.

Google Translate) Moreover, recent research on neural ma-
chine translation (NMT) [Bahdanau et al., 2014] improved
the efficiency and even enabled zero-shot translation [John-
son et al., 2016] of models for languages with no parallel
data. This provides an opportunity to leverage on as many
languages as possible to any domain, providing a much wider
context compared to the limited contexts provided by past
studies.

However, despite the maturity of translation, naively con-
catenating their vectors to the original sentence vector may
introduce more noise than signals. The unaltered translation
space on the left of Figure 2 shows an example where trans-
lation noises make the two classes indistinguishable.

In this paper, we propose a method to mitigate the possible
problems when using translated sentences as context based on
the following observations. Suppose there are two translated
sentences a and b with slight errors. We posit that a can be
used to fix b when a is used as a context of b, and vice versa1.
Revisiting the example above, to fix the vector of the English
sentence “The movie is terribly amazing”, we use the Korean
translation to move the vector towards the location where the
vector “The movie is greatly magnificent” is.

Based on these observations, we present a neural attention-
based multiple context fixing attachment (MCFA). MCFA is a
series of modules that uses all the sentence vectors (e.g. Ara-
bic, English, Korean, etc.) as context to fix a sentence vector
(e.g. Korean). Fixing the vectors is done by selectively mov-
ing the vectors to a location in the same vector space that
better separates the class, as shown in Figure 2. Noises from
translation may cause adverse effects to the vector itself (e.g.
when a noisy vector is directly used for the task) and rela-
tively to other vectors (e.g. when a noisy vector is used to
fix another noisy vector). MCFA computes two sentence us-
ability metrics to control the noise when fixing vectors: (a)
self usability ρi(a) weighs the confidence of using sentence
a in solving the task. (b) relative usability ρr(a, b) weighs
the confidence of using sentence a in fixing sentence b.

Listed below are the three main strengths of the MCFA
attachment. (1) MCFA is attached after encoding the sen-
tence, which makes it widely adaptable to other models. (2)
MCFA is extensible and improves the accuracy as the num-
ber of translated sentences increases. (3) MCFA moves the
vectors inside the same space, thus preserves the meaning of
vector dimensions. Results show that a convolutional neural
network (CNN) attached with MCFA significantly improves
the classification performance of CNN, achieving state of the

1Hereon, we mean to “fix” as to “correct, repair, or alter.”

art performance over multiple data sets.

2 Preliminaries

2.1 Problem: Translated sentences as context

In this paper, the ultimate task that we solve is the sentence
classification task where given a sentence and a list of classes,
one is task to classify which class (e.g. positive or negative
sentiment) among the list of classes does the sentence belong.
However, the main challenge that we tackle is the task on how
to utilize translated sentences as additional context in order
to improve the performance of the classifier. Specifically, the
problem states: given the original sentence s, the goal is to
use t1, t2, ..., tn, or sentences in other languages which are
translated from s, as additional context.
Base model: Convolutional neural network. The base
model used is the convolutional neural network (CNN) for
sentences [Kim, 2014]. It is a simple variation of the origi-
nal CNN for texts [Collobert et al., 2011] to be used on sen-
tences. Let xi ∈ Rd be the d-dimensional word vector of
the i-th word in a sentence of length n. A convolution oper-
ation involves applying a filter matrix W ∈ Rh×d to a win-
dow of h words and producing a new feature vector ci using
the equation ci = f([xi; ...;xi+h−1]

>W + b), where b is a
bias vector and f(.) is a non-linear function. By doing this
on all possible windows of words we produce a feature map
c = [c1, c2, ...]. We then apply a max-over-time pooling op-
eration [Collobert et al., 2011] over the feature map and take
the maximum value as the feature vector of the filter. We
do this on all feature vectors and concatenate all the feature
vectors to obtain the final feature vector v. We can then use
this vector as input features to train a classifier such as lo-
gistic regression. We use CNN to create sentence vectors for
all sentences s, t1, t2, ..., tn. From here on, we refer to these
vectors as vs,vt1 ,vt2 , ...,vtn , respectively. We refer to them
collectively as V.
Baseline 1: Naive concatenation. A simple method in or-
der to use the translated sentences as additional context is
to naively concatenate their vectors with the vector of the
original sentence. That is, we create a wide vector v̂ =
[vs;vt1 ; ...;vtn ], and use this as the input feature vector of the
sentence to the classifier. This method works fine if the trans-
lated sentences are translated properly. However, sentences
translated using machine translation models usually contain
incorrect translation. In effect, this method will have adverse
effects on the overall performance of the classifier. This will
especially be very evident if the number of additional sen-
tences increases.
Baseline 2: L2 regularization. In order to alleviate the
problems above, we can use L2 regularization to automat-
ically select useful features by weakening the appropriate
weights. The main problem of this method occurs when al-
most all of the weights coming from the vectors of the trans-
lated sentence are weakened. This leads to making the addi-
tional context vectors useless and to having a similar perfor-
mance when there are no additional context. Ultimately, this
method does not make use of the full potential of the addi-
tional context.
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Figure 3: Full architecture of the MCFA attachment. An arrow marked with a variable is a matrix multiplication of the vector and the variable.
An arrow without a variable simply carries the previous element to the next element.

3 Model
To solve the problems of the baselines discussed above, we
introduce an attention-based neural multiple context fixing at-
tachment (MCFA)2, a series of modules attached to the sen-
tence vectors V. MCFA attachment is used to fix the sentence
vectors, by slightly modifying the per-dimension values of
the vector, before concatenating them into the final feature
vector. The sentence vectors are altered using other sentence
vectors as context (e.g. vt1 is altered using vs,vt2 , ...,vtn ).
This results to moving the vectors in the same vector space.
The full architecture is shown in Figure 3.

3.1 Self usability module
To fix a source sentence vector3, we use the other sentence
vectors as guide to know which dimensions to fix and to
what extent do we need to fix them. However, other vectors
might also contain errors which may reflect to the fixing of the
source sentence vector. In order to cope with this, we intro-
duce self usability modules. A self usability module contains
the self usability of the vector ρi(a), which measures how
confident sentence a is for the task at hand. For example, an
ambiguous sentence (e.g. “The movie is terribly amazing”)
may receive a low self usability, while a clear and definite
sentence (e.g. “The movie is very good”) may receive a high
self usability.

Mathematically, we calculate the self usability of the vec-
tor vi of sentence i, denoted as ρi(vi), using the equation
ρi(vi) = σ(v>i Ti), where Ti ∈ Rd×1 is a matrix to be
learned. The produced value is a single real number from
0 to 1. We pre-calculate the self usability of all sentence vec-
tors vi ∈ V. These are used in the next module, the relative
usability module.

3.2 Relative usability module
Relative usability ρr(a, b) measures how useful a can be
when fixing b, relative to other sentences. There are two main
differences between ρi(a) and ρr(a, b). First, ρi(a) is cal-
culated before a knows about b while ρr(a, b) is calculated

2The code we use in this paper is publicly shared: https://
github.com/rktamplayo/MCFA.

3Hereon, we say that vk is a source sentence vector if vk is the
current vector to be altered.

when a knows about b. Second, ρr(a, b) can be low even
though ρi(a) is not. This means that a is not able to help in
fixing the wrong information in b. Here, we extend the addi-
tive attention module [Bahdanau et al., 2014] and use it as a
method to calculate the relative usability of two sentences of
different languages. To better visualize the original attention
mechanism, we present the equations below.

ei = u>tanh(s>W + t>i U) (1)

αi =
exp(ei)∑

j∈T exp(ej)
(2)

One major challenge in using the attention mechanism in our
problem is that the sentence vectors do not belong to the same
vector space. Moreover, one characteristic of our problem is
that the sentence vectors can be both a source and a context
vector (e.g. vs can be both s and ti in Equation 1). Because
of these, we cannot directly use the additive attention module.
We extend the module such that (1) each sentence vector vk

has its own projection matrix Xk ∈ Rd×d, and (2) each pro-
jection matrix Xk can be used as projection matrix of both
the source (e.g. when sentence k is the current source) and
the context vectors. Finally, we incorporate the self usability
function ρi(vk) to reflect the self usability of a sentence. Ul-
timately, the relative usability denoted as ρr(vi,vj) is calcu-
lated using the equations below, where× is the multiplication
of a vector and a scalar through broadcasting.

e(vi,vj) = x>tanh(v>i Xi + v>j Xj × ρi(vj)) (3)

ρr(vi,vj) =
exp(e(vi,vj))∑

vk∈V exp(e(vi,vk))
(4)

3.3 Vector fixing module
The vector fixing module applies the attention weights to the
sentence vectors and create an integrated context vector. We
then use this vector alongside with the source sentence vector
to create a weighted gate vector. The weighted gate vector is
used to determine to what extent should a dimension of the
source sentence vector be altered.

The common way to apply the attention weights to the
context vectors and create an integrated context vector ci
is to directly do weighted sum of all the context vectors.
However, this is not possible because the context vectors
are not on the same space. Thus, we use a projection ma-
trix Uk ∈ Rd×d to linearly project the sentence vector



Data set c |w| M Test
MR 2 20 10662 CV

SUBJ 2 19 10000 CV
CR 2 23 3775 CV

TREC 6 10 5952 500

Table 1: Statistics of the four data sets used in this paper. c: number
of target classes. |w|: average number of words. M : number of
data instances. Test: size of the test data, if available. If not, we use
10-fold cross validation (marked as CV) with random split.

vk to transform the sentence vectors into a common vector
space. The integrated context vector ci is then calculated as
ci =

∑
vk∈V ρr(vi,vk)v

>
k Uk.

Finally, we construct a weighted gate vector wk and use
it to fix the source sentence vectors using the equations be-
low, where Vk ∈ R2d×d is a trainable parameter and ⊗ is the
element-wise multiplication procedure. The weighted gate
vector is a vector of real numbers between 0 and 1 to modify
the intensity of per-dimension values of the sentence vector.
This causes the vector to move in the same vector space to-
wards the correct direction.

wk = σ([vk; ck]
>Vk) (5)

v̂k = vk ⊗ wk (6)
An alternative approach to do vector correction is using a
residual-style correction, where instead of multiplying a gate
vector, a residual vector [He et al., 2016] is added to the orig-
inal vector. However, this approach makes the correction not
interpretable; it is hard to explain what does adding a value to
a specific dimension mean. One major advantage of MCFA
is that the corrections in the vectors are interpretable; the
weights in the gate vector correspond to the importance of
the per-dimension features of the vector. The altered vectors
v̂s, ..., v̂tn are then concatenated and fed directly as an input
vector to the logistic regression classifier for training.

4 Experiments
4.1 Experimental setting
We test our model on four different data sets as listed below
and summarized in Table 1. (a) MR4 [Pang and Lee, 2005]:
Movie reviews data where the task is to classify whether the
review sentence has positive or negative sentiment. (b) SUBJ
[Pang and Lee, 2004]: Subjectivity data where the task is to
classify whether the sentence is subjective or objective. (c)
CR5 [Hu and Liu, 2004]: Customer reviews where The task is
to classify whether the review sentence is positive or negative.
(d) TREC6 [Li and Roth, 2002]: TREC question data set the
task is to classify the type of question.

All our data sets are in English. For the additional contexts,
we use ten other languages, selected based on their diversity
and their performance on prior experiments: Arabic, Finnish,
French, Italian, Korean, Mongolian, Norwegian, Polish, Rus-
sian, and Ukranian. We translate the data sets using Google
Translate. Tokenization is done using the polyglot library7.

4https://www.cs.cornell.edu/people/pabo/
movie-review-data/

5http://www.cs.uic.edu/˜liub/FBS/
sentiment-analysis.html

6http://cogcomp.cs.illinois.edu/Data/QA/QC/
7https://pypi.python.org/pypi/polyglot

We experiment on using only one additional context (N = 1)
and using all ten languages at once (N = 10). ForN = 1, we
only show the accuracy of the best classifier for conciseness.

For our CNN, we use rectified linear units and three fil-
ters with different window sizes h = 3, 4, 5 with 100 feature
maps each, following [Kim, 2014]. For the final sentence vec-
tor, we concatenate the feature maps to get a 300-dimension
vector. We use dropout [Srivastava et al., 2014] on all non-
linear connections with a dropout rate of 0.5. We also use
an l2 constraint [Hinton et al., 2012] of 3, following [Kim,
2014] for accurate comparisons. We use FastText pre-trained
vectors8 [Bojanowski et al., 2016] for all our data sets and
their corresponding additional context. During training, we
use mini-batch size of 50. Training is done via stochastic gra-
dient descent over shuffled mini-batches with the Adadelta
update rule. We perform early stopping using a random 10%
of the training set as the development set.

We present several competing models, listed below to com-
pare the performance of our model. (A) Aside from the base
model (CNN) [Kim, 2014], we use Dependency-based CNN
(Dep-CNN) [Ma et al., 2015], which parses the sentences
first and does convolution on ancestor paths and Dependency-
sensitivity CNN (DSCNN) [Zhang et al., 2016], which uses
LSTM to capture dependency information within each sen-
tence; (B) AdaSent [Zhao et al., 2015] adopts a hierarchi-
cal structure, where consecutive levels are connected through
gated recursive composition of adjacent segments, and feeds
the hierarchy as a multi-scale representation through a gat-
ing network; (C) Topic-aware Convolutional Neural Network
(TopCNN) [Zhao et al., 2017] uses topics as additional con-
texts and changes the CNN architecture. TopCNN uses two
types of topics: word-specific topic and sentence-specific
topic; and (D) CNN+B1 and CNN+B2 are the two baselines
presented in this paper.

We do not show results from RNN models because they
were shown to be less effective in sentence classification
in our prior experiments. For models with additional con-
text, we further use an ensemble classification model using
a commonly used method by averaging the class probability
scores generated by the multiple variants (in our model’s case,
N = 1 and N = 10 models), following [Zhao et al., 2017].

4.2 Results and discussion
We report the classification accuracy of the competing mod-
els in Table 2. We show that CNN+MCFA achieves state of
the art performance on three of the four data sets and performs
competitively on one data set. WhenN = 1, MCFA increases
the performance of a normal CNN from 85.0 to 87.6, beating
the current state of the art on the CR data set. When N = 10,
MCFA additionally beats the state of the art on the TREC data
set. Finally, our ensemble classifier additionally outperforms
all competing models on the MR data set. We emphasize
that we only use the basic CNN as our sentence encoder for
our experiments, yet still achieve state of the art performance
on most data sets. Hence, MCFA is successful in effectively
using translations as additional context to improve the perfor-

8https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.md



Model MR SUBJ CR TREC
CNN 81.5 93.4 85.0 93.6

Dep-CNN 81.9 - - 95.4
DSCNN 82.2 93.2 - 95.6
AdaSent 83.1 95.5 86.3 92.4

C = Topic word sent ens word sent ens word sent ens word sent ens

TopCNN 81.7
(+0.2)

81.3
(-0.2)

83.0
(+1.5)

93.4
(+0.0)

93.4
(+0.0)

95.0
(+1.6)

84.9
(-0.1)

84.8
(-0.2)

86.4
(+1.4)

92.5
(-1.1)

92.0
(-1.6)

94.0
(+0.4)

C = Trans N=1 N=10 ens N=1 N=10 ens N=1 N=10 ens N=1 N=10 ens

CNN+B1 81.9
(+0.4)

81.4
(-0.1)

82.6
(+1.1)

94.6
(+1.2)

93.8
(+0.4)

94.9
(+1.5)

86.2
(+1.2)

85.9
(+0.9)

86.7
(+1.7)

95.4
(+1.8)

95.0
(+1.4)

96.4
(+3.0)

CNN+B2 82.1
(+0.6)

82.1
(+0.6)

82.2
(+0.7)

94.6
(+1.2)

94.0
(+0.6)

94.8
(+1.4)

86.1
(+1.1)

86.3
(+1.3)

86.6
(+1.6)

95.4
(+1.8)

95.2
(+1.6)

96.4
(+3.0)

CNN+MCFA 82.3
(+0.8)

82.7
(+1.2)

83.2
(+1.7)

94.7
(+1.3)

94.8
(+1.4)

95.2
(+1.8)

87.6
(+2.6)

88.6
(+3.6)

89.4
(+4.4)

95.4
(+1.8)

96.0
(+2.4)

96.8
(+3.4)

Table 2: Classification accuracies of competing models. C refers to the additional context, N refers to the number of translations. In TopCNN,
word refers to using word-specific topic while sentence refers to using sentence-specific topic. Accuracies colored red are accuracies that
perform worse than CNN. Previous state of the art results and the results of our best model are bold-faced. The winning result is underlined.
The number inside the parenthesis indicates the increase from the base model, CNN.

Model MR SUBJ CR TREC
CNN 81.5 93.4 85.0 93.6

CNN+B1 81.4 94.2 83.8 93.0
CNN+B2 81.7 94.2 84.0 93.2

CNN+MCFA 81.8 94.4 85.8 94.2

Table 3: Accuracies of the worst CNN+translation classifiers when
N = 1. Accuracies less than CNN accuracies are highlighted in red.

mance of the classifier.
We compare our model (CNN+MCFA) and the baselines

discussed above (CNN+B1, CNN+B2). On all settings, our
model outperforms the baselines. When N = 10, the per-
formance of our model increases over the performance when
N = 1, however the performance of CNN+B1 decreases
when compared to the performance when N = 1. We also
show the accuracies of the worst classifiers when N = 1
in Table 3. On all data sets except SUBJ, the accuracy of
CNN+B1 decreases from the base CNN accuracy, while the
accuracy of our model always improves from the base CNN
accuracy. This is resolved by CNN+B2 by applying L2 regu-
larization, however the increase in performance is marginal.

We also compare two different kinds of additional con-
text: topics (TopCNN) and translations (CNN+B1, CNN+B2,
CNN+MCFA). Overall, we conclude that translations are bet-
ter additional contexts than topics. When using a single con-
text (i.e. TopCNNword, TopCNNsent, and our models when
N = 1), translations always outperform topics even when us-
ing the baseline methods. Using topics as additional context
also decreases the performance of the CNN classifier on most
data sets, giving an adverse effect to the CNN classifier.

5 Model interpretation
We first provide examples shown in Table 4 on how the self
usability module determines the score of sentences. In the
first example, it is hard to classify whether the translated sen-
tence is positive or negative, thus it is given a low self us-
ability score. In the second example, although the sentence
contains mistranslations, these are minimal and may actually
help the classifier by telling it that thirst for violence is not a
negative phrase. Thus, it is given a high self usability score.

Figure 4 shows two data instance examples where we show

𝑡𝑘𝑜 attention (negative sentence)

the mothman prophecies , which is mostly a bore , 

seems to exist only for its climactic setpiece .

대부분보어 ( bore ) 인 mothman 예언은그클라이막틱세트피스
( climactic setpiece ) 에만존재하는것으로보인다 .

en     ar       fi       fr       it      ko      mn    no      pl      ru      uk

(a) Example where English attention weight is larger

𝑡𝑘𝑜 attention (positive sentence)

rarely has skin looked as beautiful , desirable , even 

delectable , as it does in trouble every day .

피부가매일아름답고 , 바람직하며심지어즐거운것처럼보이는
경우는드뭅니다 .

en     ar       fi       fr       it      ko      mn    no      pl      ru      uk

(b) Example where Korean attention weight is larger

Figure 4: Attention weights of example Korean sentences from the
MR data set. The red color fill represents the attention weights given
to each sentence. The darker the fill, the larger the attention weight.

Figure 5: PCA visualization of unaltered (left) and altered (right)
vectors of the MR data set. d is the Mahalanobis distance between
two class clusters.

the attention weights given to the other contexts when fixing
a Korean sentence. The larger the attention weight is, the
more the context is used to fix the Korean sentence. In the
first example, the Korean sentence contains translation errors;
especially, the words bore and climactic setpiece were not



Original sentence:
skip this turd and pick your nose instead because you’re sure to get more out of
the latter experience .
Korean translation:
후자의경험에서더많은것을얻으려면이웅덩이를건너뛰고코를골라
야합니다 .
Human re-translation:
In order to get more from the latter experience , you need to skip this puddle and
choose your nose .
Self Usability: 0.3958

(a) Low self usability example
Original sentence:
michael moore’s latest documentary about america’s thirst for violence is his best
film yet . . .
Korean translation:
마이클무어 ( Michael Moore )의최근미국다큐멘터리 “폭력장면 ”은그
의최고의영화다 . . .
Human re-translation:
Michael Moore’s latest American documentary “ Violent Scene ” is his best film
yet . . .
Self Usability: 1.0000

(b) High self usability example

Table 4: Two examples of self usability of Korean sentences from
the MR data set. Texts colored in red are mistranslated texts.

Sentence may take its sweet time to get wherever it’s going, but if you have
the patience for it, you won’t feel like it’s wasted yours.

NN
(Unaltered)

you know that ten bucks you’d spend on a ticket? just send it to
cranky. we don’t get paid enough to sit through crap like this.

NN
(altered)

what might have been readily dismissed as the tiresome rant of
an aging filmmaker still thumbing his nose at convention takes a
surprising, subtle turn at the midway point.

Sentence
every nanosecond of the new guy reminds that you could be do-
ing something else more pleasurable. like scrubbing the toilet.
emptying rat traps. or doing last year’s taxes with your ex-wife.

NN
(Unaltered)

in the new release of cinema paradiso, the tale has turned from
sweet to bittersweet, and when the tears come during that final,
beautiful scene, they finally feel absolutely earned.

NN
(altered)

after scenes of nonsense, you’ll be wistful for the testosterone-
charged wizardry of jerry bruckheimer productions, especially
because half past dead is like the rock on walmart budget.

Table 5: Two example sentences, from English (first) and Korean
(second) vector spaces, and their nearest neighbors (NN) on both
the unaltered and altered vector spaces. We only show the original
English sentences for the Korean example for conciseness.

translated and were only spelled using the Korean alphabet.
In this example, the English attention weight is larger than the
Korean attention weight. In the second example, the Korean
sentence correctly translates all parts of the English sentence,
except for the phrase as it does in trouble. However, this
phrase is not necessary to classify the sentence correctly, and
may induce possible vagueness because of the word trouble.
Thus, the Korean attention weight is larger.

Figure 5 shows the PCA visualization of the unaltered and
the altered vectors of four different languages. In the first ex-
ample, the unaltered sentence vectors are mostly in the mid-
dle of the vector space, making it hard to draw a boundary
between the two examples. After the fixing, the boundary is
much clearer. We also show the English sentence vectors in
the second example. Even without fixing the unaltered En-
glish sentence vectors, it is easy to distinguish both classes.
After the fix, the sentence vectors in the middle of the space
are moved, making the distinction more obvious and clearer.
We also provide quantitative evidence by showing that the
Mahalanobis distance between the two classes in the altered

vectors are significantly farther than that of the unaltered vec-
tors.

We also show two examples sentences from English and
Korean vector spaces and their corresponding nearest neigh-
bors on both the unaltered and altered vector spaces in Ta-
ble 5. In the first example, the unaltered vector focuses on
the meaning of “wasted yours” in the sentence, which puts
it near sentences regarding wasted time or money. After fix-
ing, the sentence vector focuses its meaning on the slow yet
worth-the-wait pace of the movie, thus moving it closer to the
correct vectors. In the second example, all three sentences
have highly descriptive tones, however, the nearest neighbor
on the altered space is hyperbolically negative, comparing the
movie to a description unrelated to the movie itself.

6 Related work
One way to improve the performance of a sentence classifier
is to introduce new context. Common and obvious kinds of
context are the neighboring sentences of the sentence [Lin
et al., 2015], and the document where the sentence belongs
[Huang et al., 2012]. Topics of the words in the sentence
induced by a topic model were also used as contexts [Zhao
et al., 2017]. In this paper, we introduce yet another type of
additional context, sentence translations, which to the best of
our knowledge have not been used previously.

Sentence encoders trained from neural machine translation
(NMT) systems were also used for transfer learning [Hill et
al., 2016]. [Hill et al., 2017] demonstrated that altered-length
sentence vectors from NMT encoders outperform sentence
vectors from monolingual encoders on semantic similarity
tasks. Recent work used representation of each word in the
sentence to create a sentence representation suitable for mul-
tiple NLP tasks [McCann et al., 2017]. Our work shares the
commonality of using NMT for another task, but instead of
using NMT to encode our sentences, we use it to translate the
sentences into new contexts.

Increasing the number of data instances of the training set
has also been explored to improve the performance of a clas-
sifier. Recent methods include the usage of thesaurus [Zhang
et al., 2015], paraphrases [Fu et al., 2014], among others.
These simple variation techniques are preferred because they
are found to be very effective despite their simplicity. Our
work similarly augments training data, not by adding data in-
stances (vertical augmentation), but rather by adding more
context (horizontal augmentation). Though the paraphrase
of p can be alternatively used as an augmented context, this
could not leverage the added semantics coming from another
language, as discussed in Section 1.

7 Conclusion
This paper investigates the use of translations as better ad-
ditional contexts for sentence classification. To answer the
problem on mistranslations, we propose multiple context fix-
ing attachment (MCFA) to fix the context vectors using other
context vectors. We show that our method improves the clas-
sification performance and achieves state-of-the-art perfor-
mance on multiple data sets. In our future work, we plan
to use and extend our model to other complex NLP tasks.
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